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We obtain a solution for the nucleation-controlled growth of a sector of a polymer single crystal that treats 
directly the changing size of the crystal. The problem is treated by solving a pair of differential equations with 
moving boundary conditions. A steady-state solution is obtained for the case in which the two boundaries 
move apart at the same rate. The steady-state solution is inherently regime II for all possible values of the 
model parameters. The growth-front profile is a section of an ellipse. 

(Keywords: growth equations; crystal; moving boundary conditions) 

I N T R O D U C T I O N  

The standard nucleation model of polymer crystal 
growth 1 assumes that crystallization occurs by a sequence 
of steps summarized in Figure 1. Addition of a new layer 
to an existing crystal substrate requires a nucleation step, 
in which a single stem lays down on the substrate, as 
depicted in Figure la. We let i denote the nucleation rate 
per unit length along the substrate (dimensions= 
length-1 t ime-1).  After this nucleation step, subsequent 
stems lay down adjacent to the first in what is usually 
called the substrate completion process, as shown in 
Figure lb. Each edge of the new patch grows with a rate g 
(dimensions=length t ime- l ) .  We let b represent the 
thickness of the patch. 

The advance of patches on the substrate is arrested in 
one of three ways, as shown in Figure 2. Interpretation of 
crystal growth-rate data indicates that substrate 
completion does not extend beyond a representative 
length, the substrate length, denoted here as L. This is 
illustrated in Figure 2a. The reason for this behaviour is 
not understood, although either crystal defects 2 or 
regions of imperfect lattice coherence (both occurring 
with mean separation L) may be responsible. Another 
process that arrests patch growth is the collision of a left- 
moving and a right-moving boundary,  as in Figure 2b. 
The third process results from the fact that patches must 
stop when they reach the end of the crystal, as depicted in 
Figure 2c. 

Crystallization is known to occur in three separate 
regimes, called regimes I, I I  and I I I  in order of decreasing 
temperature 1'3. Regime I occurs when the process 
depicted in Figure 2a dominates. Since i is the nucleation 
rate per unit length, then iL is the rate at which nucleation 
occurs at any point within the interval L. Since patches 
are stopped only at the boundary,  each nucleation event 
gives rise to a complete layer, so that iL is also the rate at 
which layers form. Therefore, the net growth rate G is 
given by G = ibL in regime I. Regime II  occurs when the 
process in Figure 2b dominates. Then, a number  of 
nucleation events are involved in the creation of a single 

layer. Therefore, we expect G to be independent of L, but 
dependent on g. Indeed G proves to be given as G = 
b(2ig) t/2 in regime II. Regime II I  occurs when nucleation 
is so rapid that each stem is laid down in a separate 
nucleation event so that substrate completion is not 
important.  We then expect G to be independent of g once 

Figure 1 Polymer crystal growth occurs first by a nucleation step, with 
new stems appearing at a rate i per unit length on the substrate (a). The 
new patch grows laterally, each side advancing at a rate g in the 
substrate completion process (b) 
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Figmre 2 Growing patches on a substrate are arrested in one of three 
ways: (a) growth is unable to continue beyond distances of the order of 
L, indicated here by the two full circles separated by a distance L; a 
collision of left- and fight-moving patches stops both patches; (c) growth 
cannot extend beyond the end of the crystal 
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again. In fact, G is given by G = tribL in regime III, for tr 
some factor less than unity. 

The process shown in Figure 2c does not influence 
growth rates, but it does influence the morphology of 
sectored crystals. A crystal will grow with a shape that 
guarantees that layers growing towards the sector 
boundary arrive simultaneously from the two sectors, as 
depicted in Figure 2c. This paper provides one example of 
this effect. 

The following equations, proposed by Frank 4, account 
for crystal growth by this model: 

~r t3r 
S t  + g ~x = - 2grl + i ( la) 

t~l dl 
dt g ~ x  = - 2 g r l + i  (lb) 

The functions r(x, t) and l(x, t) are the concentrations of 
right- and left-moving steps on the growth front, each 
having dimensions of length- 1. The quantities g and i are 
as defined above. Each nucleation event is assumed to 
produce a pair of steps, one travelling to the right and one 
to the left, at velocities _+g, respectively. Each step 
continues to move until it either collides with a step 
moving in the opposite direction or reaches the boundary. 
Eigenfunctions of the differential operator 

are functions translating uniformly with velocity +g. 
Therefore, the left-hand sides of equations (1) represent 
the uniform translation of steps. The terms - 2 # r l  in 
equations (1) represent removal of steps through 
collisions. The terms i represent creation of new steps 
through nucleation. 

Frank 4 and Toda et al. s have considered solutions to 
the above set of differential equations. To model the effect 
shown in Figure 2a, they introduced boundary conditions 
at x = _ L/2 that effectively stop all steps reaching the 
boundary. In this paper, we consider another possibility, 
namely that the substrate completion process continues 
across the entire face of a growing sector. Therefore, we 
solve equations (1) in a moving interval - h t  < x < ht, for 
2h the relative velocity of the two boundaries of the 
growing sector. The velocity h is determined by the 
growth of adjoining sectors, and will be taken as a given 
quantity in this calculation. A more general problem, 
which we do not consider here, would be to assume that 
the left and right boundaries move at different rates. This 
would apply to the growth of a sector bounded by non- 
equivalent sectors. 

We are assuming that the process shown in Figure 2a 
does not occur, and that only the mechanisms shown in 
Figures 2b and 2c are responsible for halting the growth of 
individual patches. Our solution, therefore, is inherently 
regime II. There is also no opportunity of seeing regime 
III behaviour in any solutions of the above differential 
equations. The differential equations evolve from a 
continuity assumption, while regime III is a direct result 
of the discreteness of the structure at the molecular level. 

The complete statement of our problem is as follows: 
We seek steady-state solutions r(x, t) and l(x, t) obeying: 

~r ~r 
~t + g -~x = - 2grl + i if Ixl < ht (2a) 

L. Mansfield 
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Ot 

subject to the 

al al 
Ot g-~x = - 2 g r l + i  i f l x l < h t  (2b) 

Or ar Fo --0 Ixl>nt (3a) 

Ol 
g ~-~x = 0 if Ix] >ht  (3b) 

boundary conditions: 

r( - ht, t )  = 0 (4a) 

l(ht, t) = 0 (4b) 

The boundary conditions in equations (4) result because 
no steps enter from outside the limits x = + hr. Indeed, 
r ( x , t )=Ofor  all x <  - h t ,  and l ( x , t )=Ofor  all x > h t .  We 
also assume that h <g.  We show below that the case h >g  
need not be considered. 

Equations (3) demand some explanation. We should, 
of course, remove all fight-moving steps reaching the 
boundary at x = + ht and all left-moving steps reaching 
x = - h t .  By writing equation (3), we assume that the steps 
reaching the boundary continue on past. This artifice is 
employed to obtain a count of the number of steps that 
meet the boundary per unit time. Steps outside the 
boundaries are not considered to be real. The additional 
boundary condition that r and l are continuous at the 
boundaries completely determines the problem. 

Symmetry requires: 

r(x, t) = 1( - x ,  t) (5) 

In the next section we derive the steady-state solution 
to the above problem. Then we apply the results to 
predict the shape of a hypothetical, polyethylene-like 
crystal. In the final section we present some brief 
discussion. 

SOLUTION OF THE DIFFERENTIAL 
EQUATIONS 

We began studying this problem by computer simulation. 
The simulations provided enough insight to obtain the 
steady-state solution, and so are not reported here. 

We expect: 

r(ht, t) = 1( - ht, t) = N O (6) 

at steady state, for N O a constant. Equation (6) is 
supported by the computer simulations mentioned 
above. We begin by considering solutions valid outside 
the boundaries. As stated above, solutions to equation 
(3a) are any functions translating to the fight with 
velocity 0; combining this fact with equation (6) implies 
the following steady-state behaviour: 

r ( x , t ) = ~ N o  , for h t < x < g t + ~  
[JT[X--gt- -a)  for g t + ~ t < x  (7) 

for ~t some induction distance over which steady-state 
conditions develop, and fT some undetermined function 
representing the steps having escaped before achievement 
of the steady state. The total number of steps to have 
'escaped' from the right side of the system in time interval 
(0,t) is: 

fh ~r = Not(g - h) + (8) dx P 
t 
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• ht 2 ) 

• ht l ) 

/ No(t2-t 1 ) (g-h) layers 

bNo(t2-t 1 } (g-h) thickness 

Figure 3 Between t = t I and t = t 2 a total ofNo(t 2 - tl) (g - h )  layers are 
completed. The layers completed at t =  tl has length 2hq; the layer 
completed at t=t2 has length 2ht2. This information uniquely 
determines the angle 0 in terms of b, N o, g and h 

for P an induction term that becomes negligible at large t. 
An equal number of steps have 'escaped' from the leR side 
of the system. Equation (8) actually represents, of course, 
the number of layers completed up to time t. In the time 
interval (q,  t2) a total number of layers equal to No(t 2 - 
tl) ( 0 - h )  having total thickness bNo(t2-tl) (o-h) are 
laid down. The first layer has length 2htl, the last 2ht2. As 
indicated in Figure 3, this implies that: 

h 
tan 0 (9) 

bNo(o - h) 
where 0 (defined in Figure 3) characterizes the shape of the 
growing sector. Complete determination of 0 must await 
a determination of No. 

We now consider solutions in the interval Ixl <ht. On 
the basis of the above-mentioned computer simulations, 
we expect that the steady-state solutions are functions of 
the quantity u = x/t only. The ultimate justification of this 
statement is that this assumption leads to the correct 
solution. We also split r and 1 into odd and even parts. 
Therefore we assume: 

r=(91(U)-k-~2(U ) (10)  

where tkl is even in x (and u) and q~2 is odd in x (and u), for 
u= x/t. Equation (5) then implies that: 

From this we may immediately write: 

,) F(' t(o'+x/l" 
r(x, = L\~9.] \9--~_ x ] ] (17) 

, (x , , ) :P(L) {g ' ix l ]  ''2 (18) 
L\Eg)\gt+x)A 

We notice immediately that equations (17) and (18) fail 
to satisfy the boundary conditions (equations (4)). The 
reason for this becomes apparent from equation (13). We 
see that 4) 2 -4b 2 is just the product rl, which according to 
equation (4) becomes very small near the boundaries. 
Therefore, near the boundaries, the right-hand side of 
equation (13) is very nearly i, and it is not appropriate to 
set the left-hand side of equation (13) equal to zero. 
Therefore, equations (17) and (18) are valid everywhere 
except near the boundaries. It also follows that the 
assumption of dependence on u=x/t fails near the 
boundaries. The afore-mentioned computer simulations 
failed to detect this fact because of sampling errors. 

Therefore, we expect correction terms that are 
significant near the boundaries. In the steady state, we 
expect these to be functions only of the distance from the 
boundary, and to be significant only over distances much 
smaller than ht. Therefore, we write: 

r(x, t ) = r ( i ) ( o t  + x ) ] " 2  + f ,  (x + ht)+ f2(ht-x) 
L\ZO/\gt - x /3  

(19) 

where f l  and f2 are functions to be determined. We 
assume that both f~ and f2 are non-negligible only for 
small values of their arguments, decaying to zero over 
distances much smaller than ht. Therefore, in equation 
(19), fl(x+ht) is significant only near x = - h t ,  and 
f2(x-ht)  at x =  +ht. Equation (5) demands: 

l (x ,  t) = [ ( L ~ (  g t  - X  ~ l l / 2  "t- f l (hf - x)  -t- f 2(ht -t- X) 
Lk2oJ\ot + x )_l 

(20) 

l = ~b 1 (u) - q~2(u) (11) 

Inserting these in the differential equations and 
separating odd and even parts yields: 

i f  d4b, 
t t0  ~-U-u - U~u2) = 0 (12) 

1 (  d4b 2 
t tO-~u - U ~ - ) =  -2O(4J~-4J~)+i (13) 

In the steady state (large t), the left-hand side of equation 
(13) can be set equal to zero. Therefore, the steady-state 
solution obeys: 

g ~ - : u d : :  (14) 

and 

i 
4)2 -q~2 =29  (15) 

The following function satisfies equations (14) and (15): 
=( i ~ 1/2 g 

~b 1 \~g) (g2 u2)1i2 (16) 

In equation (20), f l  is significant only near x = ht, f2 near 
x= -ht.  Now write: 

Yx=ht+x y2=ht -x  (21) 

Then 

[ /  \ [  gt + x 1/2 
r(x,t)=Lt~)tg~--x_x) j + fl(Y~)+ f2(Y2) (22) 

I (x , t )= [ ( i~ (o t -x~] i i2+f l (y2)+f2(y , )  (23) 
k \2o) \g t+x /J  

These have for derivatives: 

~r { i \1/2 . 
~ x = ~ )  ot(Ot + x)-l/2(ot-x) -3/2 + f'dYO-f'2(y2) 

(24) 

Or / i "X 1/2 
Or-- t ~ )  gx(ot+x)-llZ(ot--X)-3/2 

+ hf'l (Yx) + hf'2(Y2) (25) 

where f ]  and f~  are the derivatives of f l  and fz 
respectively. Inserting equations (22)-(25) into equation 
(2a) yields: 
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i 'kl/2 
~-Og) g(gt + X)-l/2(gt--X) -1/2 

+ (h + g)f'x (Ya) + (h -g)f'2(Y2) 

,, F / i  
: - -AgLt~)  t~--'t"~'X-_ X ) [fl(Y2)+f2(Yl)] 

f i V/Vg t -x 'V  . . . .  
t~ )  tg -}--~-~X ) LJI'Yl)-I"f2(Y2)] 

r f ,  (yi) + f2(Y2)] [f2(Y,) + f ,  (Y2)]] (26) + 

The first term on the left-hand side of equation (26) is 
O(1/t) and we therefore drop it. Let us proceed by 
replacing x everywhere in equation (26) with Yl - h t  and 
assume that Yl is small. Then Y2 is near 2ht and fl(Y2), 
f2(Y2), f ]  (Y2) and f2(Y2) are all negligible. We obtain: 

i 1/2 g - h  1/2 

+t~) / i V/2/g+hV/2t_~_~_h) f~(yO+ f~(yDf2(Yl)]j 
(27) 

Likewise, we may set x = h t - y  2 and assume that Y2 is 
small. We obtain: 

2 U i "~al2fg+h'~l/2r, , 
(h -g) f t2 (Y2)=-  gLt~) t -~-h) JI,Y2) 

( i "~l/2fg-h~'/2 +f2(Y2)fl(Y2)] 
t ~ )  to -~--~) f2(y2) 

(28) 

The right-hand side of equation (28) becomes identical to 
the right-hand side of equation (27) if we replace Y2 with 
Yl. Therefore: 

(h -9 )  df2 = (h +g) df, (29) 

which implies: 

h+g 

No constant of integration appears in equation (30) since 
we know both functions decay to zero. Inserting equation 
(30) into equation (27) and rearranging yields: 

of, 
dy -g2~h f2  (31) 

which implies: 

[fx (Y)] - 1 = - 2 g y  + C (32) 
g - h  

The constant of integration, C, is chosen to satisfy 
equation (4a): 

. _ . [" i X~ll2['g-h\ll2 
O----r{--#ltJ=t~ ) t~--+h ) +fl(O)+f2(2ht) 

implying: 

(29~x/2(g+h)' /2 
c=-\T) h)  

(33) 

(34) 

Our final result is: 

., F/i "~['gt + X X~-] 1/2 
r (x , "  = LWUEo-;:-x-_ 

1 1 
- -  J f  - -  

fll-]-O~lX d2 -]- 0f2X 

with 

(35) 

~1 =29/(9-h)  (36) 

2ght [2g\l/21/ g + h \  1/2 
fll = 9--~- h + t--f- ) tO--~- h) (37) 

~2 = - 29/(9 + h) (38) 

2ght {2g\X/2 fg-hV/2  
d2 = ~ - ~  +t-~- ) t ~ - ~ )  (39) 

Setting x = h t  in equation (35) yields the following 
expression for No: 

i 1/2 g+h 1/2 

Inserting this into equation (9) yields: 

t a n 0 _ ~ (  g ~1]2 
\2i(9J--h2), ] (41) 

We now compute the shape of the growth front. The 
growth-front profile is given by the following expression: 

F(x, t) = b [l(x', t) - r(x', t)] dx' (42) 
tit 

F(x, t) is defined by counting all the steps between - h t  
and x at a given time, and adding + b for each left-moving 
step and - b for each right-moving step. The integrand in 
equation (42) may be written in this way: 

// i \1/2// - 2 x  \ 20fix 2012x 
l-- r -~ ' t~  ) t-(g 212-'~2) 1/2 ) flf--Ol2X 2~ 2 -2.2 d2 --~2 ~ 

~3) 
Upon integration, the last two terms contribute only In(t) 
terms, while the first contributes a term linear in t. 
Therefore, at long times, we only need consider the first 
term of equation (43). The result is: 

F(x, t) = 2b(i/2g) 1/2t{ [92 _ (x/t)2],/2 _ [92 _ h 2] 1/2} 

(44) 
Equation (44) is a section of an ellipse. Figure 4 displays a 
graph of F(x, t) for certain values of g and h. Note that 
F(_+ ht, t) is zero, while 

r(o, t) = bt(2i9)1/2{ 1 - [1 - (h/g) 2] 1/2} (45) 

In the limit 9 >>h, the growth profile is observed to be flat. 

SHAPE OF A HYPOTHETICAL CRYSTAL 

As an illustrative example, we examine the shape of a 
hypothetical crystal, formed of six sectors as shown in 
Figure 5. The structure is intended to be suggestive of 
polyethylene single crystals, although a more complete 
treatment of polyethylene crystals appears elsewhere 6. 
The crystal is formed of four sectors that grow with flat 
edges and at a velocity vector GI inclined at an angle 2 
relative to the horizontal, and of two sectors that grow 
according to the equations given in the last section, with 

1758 POLYMER, 1988, Vol 29, October 



Solution of growth equations for polymer crystal." M. L. Mansfield 

I 

- h t  
I 

÷ h t  

Figure 4 Function F(x, t) computed for particular values of O and h 

Figure 5 
analysis 

G 2 t  K - 9 X G1 

i i L 
i i i 
i k i 

I h t  I K B t  

Shape of a hypothetical crystal as predicted by the present 

Figure 6 Diagram illustrating the derivation of equation (47) 

veloci ty  G 2 directed vertically. To save space, we 
introduce the trigonometric substitution: 

cos q~ = h/g (46) 

valid whenever h <g. Then the expression [ 1 -  (h/g)2] ~/2 
which appears frequently may be written sin ~b. Figure 6 is 
a blown-up view of the region near the intersection of the 
growth fronts of the two sectors, showing the change in 
the crystal during a time interval At. During the time 
interval, the edge of the flat sector moves from the line CE 
to the line BG. The broken curves passing through C and 
B respectively represent the growth front of the curved 
sector before and after the time interval At. Let d(AB) 
represent the distance between the two points A and B, 
and let a(ABC) represent the value of the angle formed by 
the three points A, B and C. Then from Figure 6 it is 
obvious that: d(EF)=G1At, d(EG)=d(CD)=(G 1/ 
cos 2)At, a(HBD) = 4, d(CH) = hAt, d(BH) = hAt/tan O, 
tan 2 = d(HD)/d(BH) and d(HD) = hAt(tan k/tan 0). 
Therefore, requiring d(CH)= d(CD)-d(HD) implies: 

G a h tan 2 (47) 
h - cos 2 tan 0 

from which we may write: 

h = GI tan 0 
(48) 

cos 2 (tan 0 + tan 2) 

The distance K 1 in Figure 5 is given by: 

ht 
K1 - t a n  0 = tb(2ig)a/2 sin q~ (49) 

The distance K2, given by equation (45), is: 

K2 = tb(2io)x/2(1 - sin 40 (50) 

When we require G2t= Ka +K2, we obtain: 

G 2 = b(2ig) x/2 (51) 

which is the expected result for regime II crystallization 4. 
By combining equations (41) and (51), we obtain the 
following for tan 0: 

h 
tan 0 (52) 

G2 sin ~b 

Then by combining equations (47) and (52), we obtain: 

h = G1/cos 2 - G2 tan 2 sin ~b (53) 

The distance K 3 in Figure 5 is ht(tan 2/tan 0). If we define 
the aspect ratio of the crystal as the ratio of ht + K 3 to G2 t 
we obtain: 

h ( tan 2"~ 
A=~-~z \ 1 + ta~n  0)  (54) 

Inserting the expression for h given by equation (48) into 
equation (54) yields: 

G1 
A (55) 

G 2 COS 2 

as expected. The curvature of the curved sectors, defined 
as the ratio of K 2 to 2ht, is: 

G2 
C = ~ -  (1 - sin q5) (56) 

The following expression, which can be determined 
geometrically or verified by direct substitution, also 
hold s: 

tan 0 + tan 2 
A = (57) 

1 + 2C tan 0 

If one regards A, C and 2 as given, then equation (57) 
permits determination of tan 0. Then equation (55) yields 
the ratio G2/Gx ; equation (54) yields h/G1 ; equation (52) 
yields sin ~b and therefore 9/G z . On the other hand, if we 
regard 2, g/GI, and Gz/G ~ as given, then we must solve 
parametrically an equation such as equation (53) for 
h/Gx, since ~b depends on h. After this, all the other 
parameters may be calculated. For example, the structure 
shown in Figure 5 is completely determined by specifying 
A=2.408, C=0.0732 and 2=rt/6; or equivalently, by 
specifying 9/G1 = 1.356, G2/G1 =0.4795 and 4= n/6. 

DISCUSSION 

The crystal shape shown in Figure 5 is suggestive of the 
polyethylene single crystals that grow with curved growth 
fronts under certain conditions 7. However, to obtain 
appreciable curvature using the present model, we must 
select O near h (see equations (45) or (50)). This creates a 
problem, because on the basis of standard nucleation 
theory, one expects h4.g, which leads to flat growth 
profiles, by equation (45). Indeed, the experimentally 
observed curved crystals have led some workers to 
challenge the validity of the standard nucleation model 8. 
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However,  it is shown elsewhere that these crystals are 
expected to be strained 6, and that this strain can produce 
values of g near h. 

Although we have not considered the case of h > g ,  we 
can make some statements about  the solutions one would 
expect to find. Note  first of all that a layer is only 
completed when steps meet the boundaries at _ hr. If  h is 
greater than g, no steps can ever reach the boundaries, 
and no layer is ever completed. As the boundaries move 
apart,  nucleation on virgin substrate would continually 
create patches that spread to join the first layer, and 
likewise for all succeeding layers. Therefore, one would 
expect all layers to continue to grow and that 0 would 
always equal 90 °. Therefore, the case of h > g  cannot 
apply to the growth of sectored crystals, and we are 
justified in neglecting it here. 
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